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Abstract—The theory of thermal stresses based on the time-

fractional heat conduction equation with the Caputo derivative is 
used to investigate axisymmetric thermal stresses in an infinite 
cylinder under local heating of its surface. The representation of 
stresses in terms of the displacement potential and the biharmonic 
Love function is employed. The solution is obtained using the 
integral transform technique (the Laplace transform with respect to 
time, the exponential Fourier transform with respect to the axial 
coordinate and the finite Hankel transform with respect to the radial 
coordinate).  
 

I. INTRODUCTION 
Investigation of different physical phenomena in media with 

complex internal structure has led to considering differential 
equations with derivatives of fractional order. Numerical 
applications of the fractional calculus to problems of 
mechanics can be found in the literature: fractional relaxation-
oscillation [1], rheology [2]–[4], creep [5], hereditary 
mechanics of solids [6], [7], the Brownian motion [8], stress 
and strain localization in solids [9], the fractional dynamical 
systems [10] (see also [11]–[16] and references therein). The 
time-fractional derivatives describe time nonlocality (the 
memory effects), the space-fractional derivatives represent 
space nonlocality (the long-range interaction).  

The first theory of thermal stresses based on a fractional 
heat conduction equation with the time-fractional derivative of 
the order 20 ≤< α  was proposed in [17]. Later on fractional 
thermoelasticity was generalized to take into account also 
space-fractional derivatives in the heat conduction equation 
[18]–[20]. Theories of thermal stresses based on the time-
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fractional [21]–[23] and space-time fractional telegraph 
equation [24]–[26] were also proposed.  

In this paper, we consider the axisymmetric thermoelasticity 
problem for a long cylinder subjected to local heating at the 
boundary surface. Heat conduction is described by the time-
fractional equation with the Caputo derivative of the order 

.20 ≤< α The solution is obtained using the Laplace 
transform with respect to time t , the exponential Fourier 
transform with respect to the axial coordinate z , and the finite 
Hankel transform with respect to the radial coordinate .r  The 
representation of the stress tensor components in terms of the 
displacement potential Φ and the biharmonic Love function 
Ψ  is employed. Earlier the solutions to the time-fractional 
heat conduction equation in a cylinder were analyzed in [27] 
and [28]. Radial heat conduction in a cylinder and associated 
thermal stresses were studied in [29]. 

II. STATEMENT OF THE PROBLEM 
A quasi-static uncoupled theory of thermal stresses based on 

the time-fractional heat conduction equation is governed by the 
following system of equations:  
the equilibrium equation in terms of displacements 

 
( ) ( ) ,TK∇=⋅∇∇++∆ βµλµ uu                                      (1) 

 
the stress-strain-temperature relation 
 

( ) ,tr2 Ieeσ KTβλµ −+=                                                (2) 
 
and the heat conduction equation 
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where u  is the displacement vector, σ  is the stress tensor,  e  
denotes the linear strain tensor 
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λ  and µ  are Lamé constants, 3/2µλ +=K is the modulus 
of dilatation, β  is the thermal coefficient of volumetric 
expansion, a  is the thermal diffusivity coefficient, I  stands 
for the unit tensor, ∇  is the gradient operator, and ∆  denotes 
the Laplace operator. 

In the heat conduction equation (3), we use the Caputo 
fractional derivative [12], [30], [31] 
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where ( )αΓ  is the gamma function. 

Just as in the classical theory of thermal stresses [32] and 
[33], we can use the representation of the stress tensor σ  in 
terms of the displacement potential Φ  and the  Galerkin 
vector :G  
 

( ) ( ),21 ∆Φ−Φ∇∇= Iσ µ                                                     (6) 
 

( ) ( ) ( ) ( )[ ].122 ∇+∇∆++⋅∇∇∇−∆= GGGIσ ννµ     (7)                        
 
Here ν  is the Poisson ratio. 

The part of stresses due to the displacement potential 
describes the influence of the temperature field 
 

;
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the stresses expressed in terms of the biharmonic Galerkin 
vector 
 

0=∆∆G                                                                               (9) 
 

allow us to satisfy the prescribed boundary conditions for the 
components of the total stress tensor ( ) ( )21 σσσ += . 

III. TEMPERATURE FIELD IN A LONG CYLINDER  
Consider the axisymmetric time-fractional heat conduction 

equation in a long cylinder 
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under zero initial conditions  
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and the Dirichlet boundary condition corresponding to the 
local heating of a surface Rr =  
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The zero condition at infinity 
 

( ) 0,,lim =∞±→ tzrTz                                                        (14) 

 
is also assumed. 

The integral transform technique will be used to solve (10)–
(14). Recall that the Caputo fractional derivative for its 
Laplace transform rule requires the knowledge of the initial 
value of a function and its integer derivatives of order 

:1,,2,1 −= nk   
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where s  is the transform variable. 

Application of the Laplace transform with respect to time to 
(10)–(13) gives  
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where the asterisk denotes the Laplace transform. 

The exponential Fourier transform with respect to the axial 
coordinate  z  leads to the following equation: 
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and the boundary condition 
 

INTERNATIONAL JOURNAL OF MECHANICS Volume 8, 2014

ISSN: 1998-4448 384



 

 

( )
,

sin2
*~: 0

ηπ
η

s
lT

TRr ==                                           (19) 

 
where the tilde denotes the Fourier transform, and η  is the 
transform variable. 

Next, we use the finite Hankel transform [34] 
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where the hat marks the Hankel transform, ( )rJ n  is the Bessel 

function of the order n , kRξ  are the positive roots of the 
zeroth order Bessel function 
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From (18), (19) and (23) we get 
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or 
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The inverse Laplace transform results in 
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where ( )zEα  is the Mittag-Leffler function in one parameter 
α  having the series representation 
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and the following formula [12], [30], [31] 
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has been used.  

Inversion of the finite Hankel transform gives 
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and finally 
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It should be emphasized that the relation [34] 
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for ηβ i= can be rewritten as 
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where ( )rI n  is the modified Bessel function of order .n  
Hence (30) takes the form 
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At the boundary surface Rr = , the first integral in (33) 
satisfies the boundary condition (13), whereas the second one 
equals zero.  

IV. THERMAL STRESSES IN A LONG CYLINDER  
Equation (8) in the cylindrical coordinates takes the form 
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or, after applying the Fourier and finite Hankel transforms, 
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The components of the tensor ( )1σ  are expressed as [32] 
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or in the Fourier transform domain 
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To satisfy the boundary conditions for the total stress tensor, 
we should consider the stress tensor  ( )2σ expressed in terms 
of the Love function [35]: 
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The biharmonic Love function 
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can be obtained as a particular case of the Galerkin vector 
having only the  z-component  ( ).,0,0 Ψ=G  
 The solution of (51) in the Fourier transform domain 
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Fig. 1 the distance-dependence of a nondimensional 
temperature ( 0=z , ,5.0=κ 1=l ) 

 
finite at 0=r  has the form [34] 
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with ( )ηA  and ( )ηB  being the integration coefficients. 
 
From (47) –(50) and (53) we get 
 

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )[ ]},21

][2~

10
3

1
1

0
32

ηηηνηη

ηηηηηµσ

rIrrIB

rIrrIAirr

+−+

−= −

                 (54) 

 
( ) ( ) ( ) ( )

( ) ( ) ,]

21[2~

1
12

0
32

ηηη

ηηηνµσ θθ

rIrA

rIBi

−+

−=
                                  (55) 

 
( ) ( ) ( ){

( ) ( ) ( ) ( )[ ]},22

2~

10
3

0
32

ηηηνηη

ηηηµσ

rIrrIB

rIAizz

+−+

−=
                 (56) 

 
( ) ( ) ( ){

( ) ( ) ( ) ( )[ ]}.12

2~

01
3

1
32

ηηηνηη

ηηηµσ

rIrrIB

rIArz

+−+

=
                 (57) 

 
 

 

 

Fig. 2 the distance-dependence of the nondimensional stress 
component rrσ  ( 0=z , ,5.0=κ 1=l ) 

 
The surface of a cylinder is traction free. Hence 
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what allows us to determine the integration constants 
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The final expressions for the stress tensor components have 

the following form: 
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Fig. 3 the distance-dependence of the nondimensional stress 
component zzσ ( 0=z , ,5.0=κ 1=l ) 
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Fig. 4 the distance-dependence of the nondimensional stress 
component rzσ ( 75.0=z , ,5.0=κ 1=l ) 
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In the particular case of classical thermoelasticity ( 1=α ), the 
Mittag-Leffler function  
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and the obtained solution coincides with that presented in [32]. 
Two other particular cases, with 2=α  (the ballistic heat 
conduction described by the wave equation for temperature) 
and with 0=α  (the localized heat conduction described by 
the Helmholtz equation for temperature), are obtained when  
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respectively. 

V. NUMERICAL CALCULATIONS 
The results of numerical calculations are shown in Figs. 1-4. 

To evaluate the Mittag-Leffler function, we have applied the 
algorithm suggested in [36]. The following nondimensional 
quantities  
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have been introduced. In computations we have assumed 

.25.0=ν Temperature T  and the stress components 

,rrσ θθσ , and zzσ are even functions in ;z  in calculations 

we have taken .0=z  The stress component rzσ  is an odd 
function in ;z  calculations were carries out for .75.0=z  

VI. CONCLUSION 
In the case 10 << α , the time-fractional heat conduction 

equation interpolates the elliptic Helmholtz equation and the 
classical heat conduction equation. Because the fractional heat 
conduction equation in the case 21 ≤≤ α  interpolates the 
standard heat conduction equation ( 1=α ) and the wave 
equation ( 2=α ), the proposed theory interpolates the 
classical theory of thermal stresses and thermoelasticity 

without energy dissipation introduced by Green and Naghdi 
[37]. In the case of the wave equation ( 2=α ), temperature 
T (Fig. 1) and the stress component zzσ  (Fig. 3) have jumps 
at the wave front corresponding to κ−=1r with 

.10 << κ The curves for α  approaching 2 approximate this 
jump. It should be emphasized that the response of the time-
fractional heat conduction equation with 21 ≤≤ α  to a 
localized disturbance spreads infinitely fast [38] and [39]. On 
the other hand, the fundamental solution to the time-fractional 
heat conduction equation possesses a maximum that disperses 
with a finite speed similar to the behavior of the fundamental 
solution to the wave equation [38] and [39]. Fractional 
thermoelasticity offers considerable possibilities for better 
describing thermal stresses in porous materials, fractals, 
random and disordered media, and other solids with 
complicated internal structure. In the framework of fractional 
thermoelasticity, several problems for various geometries were 
solved in [40]–[46]. 
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